Publications HAL de Vuillemot de la structure 425649

Journal articles

titre
phi-FEM for the heat equation: optimal convergence on unfitted meshes in space
auteur
Michel Duprez, Vanessa Lleras, Alexei Lozinski, Killian Vuillemot
article
Comptes Rendus. Mathématique, 2023, 361 (G11), pp.1699-1710. ⟨10.5802/crmath.497⟩
Resume_court
Thanks to a finite element method, we solve numerically parabolic partial differential equations on .....
Accès au texte intégral et bibtex
https://hal.science/hal-03685445/file/heat_cras_hal.pdf BibTex

Book sections

titre
φ-FEM: an efficient simulation tool using simple meshes for problems in structure mechanics and heat transfer
auteur
Stéphane Cotin, Michel Duprez, Vanessa Lleras, Alexei Lozinski, Killian Vuillemot
article
Stéphane Bordas; Alexander Menk; Sundararajan Natarajan. Partition of Unity Methods, Wiley, pp.191-216, 2022, Wiley Series in Computational Mechanics, 978-0470667088. ⟨10.1002/9781118535875.ch7⟩
Resume_court
One of the major issues in the computational mechanics is to take into account the geometrical compl .....
Accès au texte intégral et bibtex
https://hal.science/hal-03372733/file/main.pdf BibTex

Preprints, Working Papers, ...

titre
Phi-FD : A well-conditioned finite difference method inspired by phi-FEM for general geometries on elliptic PDEs
auteur
Michel Duprez, Vanessa Lleras, Alexei Lozinski, Vincent Vigon, Killian Vuillemot
article
2024
Resume_court
This paper presents a new finite difference method, called phi-FD, inspired by the phi-FEM approach .....
Accès au texte intégral et bibtex
https://hal.science/hal-04731164/file/phiFD.pdf BibTex
titre
Phi-FEM-FNO: a new approach to train a Neural Operator as a fast PDE solver for variable geometries
auteur
Michel Duprez, Vanessa Lleras, Alexei Lozinski, Vincent Vigon, Killian Vuillemot
article
2024
Resume_court
In this paper, we propose a way to solve partial differential equations (PDEs) by combining machine .....
Accès au texte intégral et bibtex
https://hal.science/hal-04473794/file/main_hal.pdf BibTex